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1
ACTIVE BATTERY SYSTEM ESTIMATION
REQUEST GENERATION

TECHNICAL FIELD

This application generally relates to estimating traction
battery parameters.

BACKGROUND

Hybrid-electric and pure electric vehicles rely on a traction
battery to provide power for propulsion. To ensure optimal
operation of the vehicle, various properties of the traction
battery may be monitored. One useful property is the battery
power capability which indicates how much power the bat-
tery may supply or absorb at a given time. Another useful
property is the battery state of charge which indicates the
amount of charge stored in the battery. The battery properties
are important for controlling operation of the battery during
charging/discharging, maintaining the battery within safe
operating limits, and balancing cells of the battery.

Battery properties may be measured directly or indirectly.
Battery voltages and currents may be measured directly using
sensors. Other battery properties may require that one or more
parameters of the battery be estimated first. The estimated
parameters may include resistances, capacitances, and volt-
ages associated with the traction battery. The battery proper-
ties may then be calculated from the estimated battery param-
eters. Many prior art schemes are available for estimating the
battery parameters, including implementing a Kalman filter
model to recursively estimate the model parameters.

SUMMARY

A powertrain control system for a vehicle includes at least
one controller programmed to, based on a variability of esti-
mates of a battery parameter and an age of a most recent
estimate of the battery parameter, excite a battery such that at
least one frequency component amplitude of battery power
demand within a predetermined range exceeds a predeter-
mined magnitude without affecting acceleration of the
vehicle when the frequency components within the predeter-
mined range are less than the predetermined magnitude. The
time between the excitations may decrease as the variability
increases. The at least one controller may be further pro-
grammed to excite the battery further based on an age of the
battery. The time between the excitations may increase as the
age of the battery increases. The variability may be based on
a standard deviation of previously learned estimates of a
battery parameter. The at least one controller may be further
programmed to estimate the battery parameter when the at
least one frequency component amplitude of battery power
demand within the predefined range exceeds the predeter-
mined magnitude. The at least one controller may be further
programmed to estimate the battery parameter at a plurality of
state of charge and temperature values.

A method of controlling a vehicle may include exciting,
without affecting acceleration of the vehicle, a traction bat-
tery such that at least one frequency component amplitude of
battery power demand within a predefined range exceeds a
predetermined magnitude based on a variability of estimates
of'a battery parameter and an age of a most recent estimate of
the battery parameter. The time between excitations may
decrease as the variability increases. Exciting the traction
battery may be further based on an age of the traction battery.
The time between the excitations may increase as the age of
the traction battery increases. The variability may be based on
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a standard deviation of a plurality of previously learned esti-
mates of the battery parameter. The method may further com-
prise estimating the battery parameter when the at least one
frequency component amplitude within the predefined range
exceeds the predetermined magnitude, and operating the trac-
tion battery according to the estimate of the battery parameter.

A vehicle may include a traction battery and at least one
controller programmed to, based on a variability of estimates
of'a battery parameter and an age of a most recent estimate of
the battery parameter, excite the traction battery such that at
least one frequency component amplitude of battery power
demand within a predefined range exceeds a predetermined
magnitude without affecting acceleration of the vehicle. The
time between the excitations may decrease as the variability
increases. The at least one controller may be further pro-
grammed to excite the traction battery based on an age of the
traction battery and the time between excitations may
increase as the age of the battery increases. The at least one
controller may be further programmed to estimate the battery
parameter when the at least one frequency component ampli-
tude of battery power demand within a predetermined range
exceeds the predetermined magnitude. The predetermined
range and the predetermined magnitude may be defined by
traction battery impedance parameters

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram of a hybrid vehicle illustrating typical
drivetrain and energy storage components.

FIG. 2 is a diagram of a possible battery pack arrangement
comprised of multiple cells, and monitored and controlled by
a Battery Energy Control Module.

FIG. 3 is a diagram of an example battery cell equivalent
circuit.

FIG. 4 is a graph that illustrates a possible open-circuit
voltage (Voc) vs. battery state of charge (SOC) relationship
for a typical battery cell.

FIG. 5 is a flowchart of a possible method for calculating
battery capacity incorporating active excitation of the traction
battery.

FIG. 6 is a flowchart of a possible method for estimating
battery parameters using active excitation of the traction bat-
tery.

FIG. 7 is a diagram depicting possible power flows for
describing active excitation of the traction battery.

FIG. 8 is a flowchart of a possible method for performing
cell balancing using active excitation of the traction battery.

DETAILED DESCRIPTION

Embodiments of the present disclosure are described
herein. It is to be understood, however, that the disclosed
embodiments are merely examples and other embodiments
can take various and alternative forms. The figures are not
necessarily to scale; some features could be exaggerated or
minimized to show details of particular components. There-
fore, specific structural and functional details disclosed
herein are not to be interpreted as limiting, but merely as a
representative basis for teaching one skilled in the art to
variously employ the present invention. As those of ordinary
skill in the art will understand, various features illustrated and
described with reference to any one of the figures can be
combined with features illustrated in one or more other fig-
ures to produce embodiments that are not explicitly illus-
trated or described. The combinations of features illustrated
provide representative embodiments for typical applications.
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Various combinations and modifications of the features con-
sistent with the teachings of this disclosure, however, could
be desired for particular applications or implementations.

FIG. 1 depicts a typical plug-in hybrid-electric vehicle
(HEV). A typical plug-in hybrid-electric vehicle 12 may com-
prise one or more electric machines 14 mechanically con-
nected to a hybrid transmission 16. The electric machines 14
may be capable of operating as a motor or a generator. In
addition, the hybrid transmission 16 is mechanically con-
nected to an engine 18. The hybrid transmission 16 is also
mechanically connected to a drive shaft 20 that is mechani-
cally connected to the wheels 22. The electric machines 14
can provide propulsion and deceleration capability when the
engine 18 is turned on or off. The electric machines 14 also act
as generators and can provide fuel economy benefits by
recovering energy that would normally be lost as heat in the
friction braking system. The electric machines 14 may also
reduce vehicle emissions by allowing the engine 18 to operate
at more efficient speeds and allowing the hybrid-electric
vehicle 12 to be operated in electric mode with the engine 18
off under certain conditions.

A traction battery or battery pack 24 stores energy that can
be used by the electric machines 14. A vehicle battery pack 24
typically provides a high voltage DC output. The traction
battery 24 is electrically connected to one or more power
electronics modules. One or more contactors 42 may isolate
the traction battery 24 from other components when opened
and connect the traction battery 24 to other components when
closed. A power electronics module 26 is also electrically
connected to the electric machines 14 and provides the ability
to bi-directionally transfer energy between the traction bat-
tery 24 and the electric machines 14. For example, a typical
traction battery 24 may provide a DC voltage while the elec-
tric machines 14 may require a three-phase AC current to
function. The power electronics module 26 may convert the
DC voltage to a three-phase AC current as required by the
electric machines 14. In a regenerative mode, the power elec-
tronics module 26 may convert the three-phase AC current
from the electric machines 14 acting as generators to the DC
voltage required by the traction battery 24. The description
herein is equally applicable to a pure electric vehicle. For a
pure electric vehicle, the hybrid transmission 16 may be a
gear box connected to an electric machine 14 and the engine
18 may not be present.

In addition to providing energy for propulsion, the traction
battery 24 may provide energy for other vehicle electrical
systems. A typical system may include a DC/DC converter
module 28 that converts the high voltage DC output of the
traction battery 24 to a low voltage DC supply that is com-
patible with other vehicle loads. Other high-voltage loads,
such as compressors and electric heaters, may be connected
directly to the high-voltage without the use of a DC/DC
converter module 28. The low-voltage systems may be elec-
trically connected to an auxiliary battery 30 (e.g., 12V bat-
tery).

The vehicle 12 may be an electric vehicle or a plug-in
hybrid vehicle in which the traction battery 24 may be
recharged by an external power source 36. The external power
source 36 may be a connection to an electrical outlet. The
external power source 36 may be electrically connected to
electric vehicle supply equipment (EVSE) 38. The EVSE 38
may provide circuitry and controls to regulate and manage the
transfer of energy between the power source 36 and the
vehicle 12. The external power source 36 may provide DC or
AC electric power to the EVSE 38. The EVSE 38 may have a
charge connector 40 for plugging into a charge port 34 of the
vehicle 12. The charge port 34 may be any type of port
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4

configured to transfer power from the EVSE 38 to the vehicle
12. The charge port 34 may be electrically connected to a
charger or on-board power conversion module 32. The power
conversion module 32 may condition the power supplied
from the EVSE 38 to provide the proper voltage and current
levels to the traction battery 24. The power conversion mod-
ule 32 may interface with the EVSE 38 to coordinate the
delivery of power to the vehicle 12. The EVSE connector 40
may have pins that mate with corresponding recesses of the
charge port 34. Alternatively, various components described
as being electrically connected may transfer power using a
wireless inductive coupling.

One or more wheel brakes 44 may be provided for decel-
erating the vehicle 12 and preventing motion of the vehicle
12. The wheel brakes 44 may be hydraulically actuated, elec-
trically actuated, or some combination thereof. The wheel
brakes 44 may be a part of a brake system 50. The brake
system 50 may include other components that are required to
operate the wheel brakes 44. For simplicity, the figure depicts
a single connection between the brake system 50 and one of
the wheel brakes 44. A connection between the brake system
50 and the other wheel brakes 44 is implied. The brake system
50 may include a controller to monitor and coordinate the
brake system 50. The brake system 50 may monitor the brake
components and control the wheel brakes 44 to achieve
desired operation. The brake system 50 may respond to driver
commands and may also operate autonomously to implement
features such as stability control. The controller of the brake
system 50 may implement a method of applying a requested
brake force when requested by another controller or sub-
function.

One or more electrical loads 46 may be connected to the
high-voltage bus. The electrical loads 46 may have an asso-
ciated controller that operates the electrical load 46 when
appropriate. Examples of electrical loads 46 may be a heating
module or an air-conditioning module.

The various components discussed may have one or more
associated controllers to control and monitor the operation of
the components. The controllers may communicate via a
serial bus (e.g., Controller Area Network (CAN)) or via dis-
crete conductors. In addition, a system controller 48 may be
present to coordinate the operation of the various compo-
nents.

A traction battery 24 may be constructed from a variety of
chemical formulations. Typical battery pack chemistries may
be lead acid, nickel-metal hydride (NIMH) or Lithium-Ion.
FIG. 2 shows a typical traction battery pack 24 in a simple
series configuration of N battery cells 72. Other battery packs
24, however, may be composed of any number of individual
battery cells connected in series or parallel or some combi-
nation thereof. A typical system may have one or more con-
trollers, such as a Battery Energy Control Module (BECM)
76 that monitors and controls the performance of the traction
battery 24. The BECM 76 may monitor several battery pack
level characteristics such as pack current 78, pack voltage 80
and pack temperature 82. The BECM 76 may have non-
volatile memory such that data may be retained when the
BECM 76 is in an off condition. Retained data may be avail-
able upon the next key cycle.

In addition to the pack level characteristics, there may be
battery cell 72 level characteristics that are measured and
monitored. For example, the terminal voltage, current, and
temperature of each cell 72 may be measured. A system may
use a sensor module 74 to measure the battery cell 72 char-
acteristics. Depending on the capabilities, the sensor module
74 may measure the characteristics of one or multiple of the
battery cells 72. The battery pack 24 may utilize up to N_
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sensor modules 74 to measure the characteristics of all the
battery cells 72. Each sensor module 74 may transfer the
measurements to the BECM 76 for further processing and
coordination. The sensor module 74 may transfer signals in
analog or digital form to the BECM 76. In some embodi-
ments, the sensor module 74 functionality may be incorpo-
rated internally to the BECM 76. That is, the sensor module
74 hardware may be integrated as part of the circuitry in the
BECM 76 and the BECM 76 may handle the processing of
raw signals.

It may be useful to calculate various characteristics of the
battery pack. Quantities such a battery power capability and
battery state of charge may be useful for controlling the
operation of the battery pack as well as any electrical loads
receiving power from the battery pack. Battery power capa-
bility is a measure of the maximum amount of power the
battery can provide or the maximum amount of power that the
battery can receive. Knowing the battery power capability
allows electrical loads to be managed such that the power
requested is within limits that the battery can handle.

Battery pack state of charge (SOC) gives an indication of
how much charge remains in the battery pack. The battery
pack SOC may be output to inform the driver of how much
charge remains in the battery pack, similar to a fuel gauge.
The battery pack SOC may also be used to control the opera-
tion of an electric or hybrid-electric vehicle. Calculation of
battery pack SOC can be accomplished by a variety of meth-
ods. One possible method of calculating battery SOC is to
perform an integration of the battery pack current over time.
This is well-known in the art as ampere-hour integration. One
possible disadvantage to this method is that the current mea-
surement may be noisy. Possible inaccuracy in the state of
charge may occur due to the integration of this noisy signal
over time.

A battery cell may be modeled as a circuit. FIG. 3 shows
one possible battery cell equivalent circuit model (ECM). A
battery cell may be modeled as a voltage source (V,_.) 100
having associated resistances (102 and 104) and capacitance
106. V. 100 represents the open-circuit voltage of the bat-
tery. The model includes an internal resistance, r, 102, a
charge transfer resistance, r, 104, and a double layer capaci-
tance, C 106. The voltage V, 112 is the voltage drop across the
internal resistance 102 due to current 114 flowing through the
circuit. The voltage V, 110 is the voltage drop across the
parallel combination of r, and C due to current 114 flowing
through the combination. The voltage V, 108 is the voltage
across the terminals of the battery (terminal voltage).

Because of the battery cell impedance, the terminal volt-
age, V, 108, may not be the same as the open-circuit voltage,
V,. 100. The open-circuit voltage, V. 100, may not be
readily measurable as only the terminal voltage 108 of the
battery cell is accessible for measurement. When no current
114 is flowing for a sufficiently long period of time, the
terminal voltage 108 may be the same as the open-circuit
voltage 100. A sufficiently long period of time may be nec-
essary to allow the internal dynamics of the battery to reach a
steady state. When current 114 is flowing, V. 100 may not be
readily measurable and the value may need to be inferred
based on the circuit model. The impedance parameter values,
r,, 15, and C may be known or unknown. The value of the
parameters may depend on the battery chemistry.

For a typical Lithium-Ion battery cell, there is a relation-
ship between SOC and the open-circuit voltage (V) such
that V__=f(SOC). FIG. 4 shows a typical curve 124 showing
the open-circuit voltage V. as a function of SOC. The rela-
tionship between SOC and V. may be determined from an
analysis of battery properties or from testing the battery cells.
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The function may be such that SOC may be calculated as
f1(V,_). The function or the inverse function may be imple-
mented as a table lookup or an equivalent equation within a
controller. The exact shape of the curve 124 may vary based
on the particular formulation of the Lithium-Ion battery. The
voltage V. changes as a result of charging and discharging of
the battery. The term df(soc)/dsoc represents the slope of the
curve 124.

Battery Parameter Estimation

The battery impedance parameters r,, r,, and C may
change over operating conditions of the battery. The values
may vary as a function of the battery temperature. For
example, the resistance values, r; and r,, may decrease as
temperature increases and the capacitance, C, may increase as
the temperature increases. The values may also depend on the
state of charge of the battery.

The battery impedance parameter values, r|, r,, and C may
also change over the life of the battery. For example, the
resistance values may increase over the life of the battery. The
increase in resistance may vary as a function of temperature
and state of charge over the life of battery. Higher battery
temperatures may cause a larger increase in battery resistance
over time. For example, the resistance for a battery operating
at 80 C may increase more than the resistance of a battery
operating at 50 C over a period of time. At a constant tem-
perature, the resistance of a battery operating at 50% state of
charge may increase more than the resistance of a battery
operating at 90% state of charge. These relationships may be
battery chemistry dependent.

A vehicle power system using constant values of the bat-
tery impedance parameters may inaccurately calculate other
battery characteristics such as state of charge. In practice, it
may be desirable to estimate the impedance parameter values
during vehicle operation so that changes in the parameters
will continually be accounted for. A model may be utilized to
estimate the various impedance parameters of the battery.

The model may be the equivalent circuit model of FIG. 3.
The governing equations for the equivalent model may be
written as:

1 1 ®

Vo=———Vot —xi

2 e 2+C*z

Vi= Vo= Va—ry i @
AVoe 1l ©)

Voo =~ F50C 0

where Q is the battery capacity, 1) is the charge/discharge
efficiency, i is the current, V, is the time based derivative of
V,, V,_is the time based derivative of V,_.and dV, _/dSOC is
the SOC based derivative of V..

Combining equations (1) through (3) yields the following:

av,, d Vo “)
—= [ o 0 v dsoc
dr oc i
= 1 * + Q i
dv, - [ 2 }
T Ciry 1
C
oc ®)
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An observer for equations (4) and (5) can be expressed as
follows:

N % 6
AV, 0 0 4V ®17 ©
dr Voo dasoc
R = 1 | + Q %0+
dv, T Cera Va 1
dr C
Lx(Vi(n) = V(1))
. Voc &
Vi =[1 =11«  |+[-r]=i
Va
where

V (1) is the measured cell terminal voltage,
\A/t (1) is an estimate of the cell terminal voltage,
vOC‘S

\72 is an estimate of the voltage across the capacitive element,
and

is an estimate of the cell open-circuit voltage,

L is a gain matrix chosen so that the error dynamics are stable
under all conditions.

The above model provides an estimate of the open-circuit
voltage and the voltage across the capacitive network of the
ECM. As the observer error approaches zero, the estimates
may be considered to be sufficiently accurate. The above
model relies on impedance parameter values such as ry, r,,
and C. In order for the model to be accurate, the parameter
values may need to be known with sufficient accuracy. As the
parameter values may vary over time, it may be desirable to
estimate the parameter values.

A possible representation of the battery parameter learning
model from above may be as follows:

ro#C (8)
_[ AV _dVel - di)
Voel) = Vit = [ 02 - S22 iy 2 Ja| ribrs
ri#ryxC

A Kalman filter-based recursive parameter estimation
scheme can be used to estimate the impedance parameters (r,
15, C) of the observer of equations (6) and (7). A discretized
form of these parameters can be expressed as a function of the
system states as follows:

[(Voclk) = V)] = )

(Vi) = Voo (k) =

[TS( ]'k Lot v ith—1 ]
2 Wtk = 1) Vet 1y ) 1O ORI

rxC

r1+r

r s C

The Kalman filter recursive parameter estimation can be
achieved by expressing equation (8) in the form:
Yk)=dI(k)*0 (k) (10)

where @ is referred to as the regressor and O is the parameter
vector.
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The Kalman filter estimation scheme may then expressed
by the following equations:

Bk +1) = O + K(k) # (Y(k + 1) =T (1) «O(K) (n

Kk +1) = Qtk + 1) # @k + 1) (12)

P(k)
Ro+ @ (k + D P) =Dk + 1))

Qk+1) = 13

P(k) = D(k) = DT (k) = P(k) (14)

Plhe+ 1) = PR+ R~ e s Do PO w0 £ 1)

where ©(k+1) is the estimate of the parameters from equation
(8), K, Q, and P are calculated as shown, and R, and R, are
constants. After the parameters are calculated using the Kal-
man filter algorithm, the parameters can be used in equations
(6) and (7) to obtain an estimate of the state variables. Once
V,.is estimated, the value of SOC can be determined accord-
ing to FIG. 4. Other parameter estimation schemes, such as
least-squares estimation, may also be utilized.

The above parameter estimation requires a value of V.
V,. may be calculated from equation (3). At the start of an
ignition cycle after the battery is rested, the terminal voltage
and the open-circuit voltage may be considered to be equal. A
measurement of the terminal voltage may be used as the
starting value for V.. Equation (3) may then be used to
estimate the open-circuit voltage as a function of current.
Once reasonably accurate parameter estimates are available,
the open-circuit voltage estimate derived from equations (6)
and (7) may be used.

One possible model may consider the current (i) as the
input, the voltage (V) as a state, and the term (V, -V ) as an
output. The battery impedance parameters (r,, r, and ¢) or
their various combinations may also be treated as states to be
identified. Once the battery ECM parameters and other
unknowns are identified, the SOC and the power capability
may be calculated based on operating limits of a battery
voltage and current, and the current battery state.

Various values may be measured on a per-cell basis or on an
overall pack basis. For example, the terminal voltage, V,, may
be measured for each cell of the traction battery. The current,
i, may be measured for the entire traction battery since the
same current may flow through each cell. Different pack
configurations may require different combinations of mea-
surements. The estimation model may be performed for each
cell and the cell values may then be combined to arrive at an
overall pack value.

Another possible implementation may utilize an Extended
Kalman Filter (EKF). An EKF is a dynamic system, that is
governed by equations of the following form:

(15)

S U1 Wi )

(16)

Z=h(x Vi)

where: x, may include the state V, and the other battery ECM
parameters; u, is the input (e.g., battery current); w, is the
process noise; z, may be the output (e.g., V__~V,); and v, is
the measurement noise.

One possible set of states for the governing equations for
the equivalent model may be chosen as follows:
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The corresponding state space equations of equations (1)
and (2), in discrete or continuous time, may be expressed in
the form of Equations (3) and (4). Based on the system model
described, an observer may be designed to estimate the
extended states (X, X,, X5 and x,). Once the states are esti-
mated, the voltage and impedance parameter values (V,, r;,
r,, and C) may be calculated as a function of the states as
follows:

Po=x, (18)
F1=xy 19)
Fy=xy/%, (20)
C=1/x; @n

The complete set of EKF equations consists of time update
equations and measurement update equations. The EKF time
update equations project the state and covariance estimate
from the previous time step to the current time step:

T e, t5.1,0) (22)

Py = APy A W0 W (23)

where: X,” represents a priori estimate of x,; P, represents a
priori estimate error covariance matrix; A, represents the
Jacobian matrix of the partial derivatives of f(x, u, w) with
respect to x; P,_, represents a posteriori estimate error matrix
of last step; A, ” represents transpose of matrix A; W, repre-
sents the Jacobian matrix of the partial derivatives of f(x, u, w)
with respect to process noise variable w; Q, , represents a
process noise covariance matrix, and W,” represents trans-
pose of matrix W,.

The matrix A, may be constructed from the set of state
equations defined by combining the system equations and the
system states. The input, u, in this case, may include the
current measurement, i.

The measurement update equations correct the state and
covariance estimate with the measurement:

K=P, B (H P H VRV, (24)
£ =R K (2 =R (% ,0)0) (25)
Pr=(-KH)P,~ (26)

where: K, represents the EKF gain; H, represents the Jaco-
bian matrix of the partial derivatives of h with respect to x;
H,7, is the transpose of H,; R, represents a measurement
noise covariance matrix; V, represents the Jacobian matrix of
the partial derivatives of h with respect to measurement noise
variable v; z, represents the measured output values; and V,”
is the transpose of V.

In the EKF model, the resistance and capacitance param-
eters may be assumed to be slowly varying and have a deriva-
tive of zero. The estimation objective may be to identify the
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time-varying values of the circuit parameters. In the above
model, three impedance parameters may be identified: r,, r,,
and C. More comprehensive models may additionally esti-
mate V. as a time-varying parameter. Other model formula-
tions may incorporate a second RC pair to represent a slow
and a fast voltage recovery dynamics. These formulations
may increase the number of states in the model. Other battery
properties may then be calculated based on the identified
parameters or may be estimated as part of the model.

One of ordinary skill in the art can construct and implement
the EKF given a set of model equations. The system of equa-
tions described above is one example of a system model for a
battery system. Other formulations are possible and the meth-
ods described will work equally well on other formulations.

In the above example, i and V, may be measured quantities.
The quantity V. may be derived from the measured quanti-
ties and the parameter estimates from the EKF. Once V__ is
known, the state of charge may be calculated based on FIG. 4.
Knowing the above parameters may allow one to calculate
other battery properties.

Battery Capacity Estimation

There are two main categories of battery capacity estima-
tion algorithms. The first category bases the calculation on the
definition of capacity—battery throughput divided by a dif-
ference in state of charge (SOC) values. This approach is
based on knowledge of two separate SOC values obtained
independent of battery capacity. The calculation may be
expressed as:

TF
f idt
i

= 50C; - s0C;

@n
Q

Throughput
~ S0C; -50Cy

where SOC, and SOCare the state of charge values at times
T, and T respectively. The battery throughput may be defined
as the integral of current over a time period. When imple-
mented in a controller, the integral may be replaced by a
summation of current values multiplied by the sample time.

Systems using the above formulation are present in the
prior art. One prior art approach is to obtain the state of charge
values over two key-on/key-off cycles. For a lithium-ion bat-
tery, it is well-known that after the battery has been resting a
sufficient time, the terminal voltage will be very close to the
open-circuit voltage of the battery (i.e., V=V ). The terminal
voltage may be measured at power-up and the state of charge
may be derived from the open-circuit voltage (e.g., FIG. 4).
The throughput may be calculated over each ignition cycle
and stored in a non-volatile memory for use in the next igni-
tion cycle.

The accuracy of the capacity definition approach depends
on several factors. The calculation is dependent upon two
key-on and key-off cycles to obtain the SOC difference. The
two ignition cycles must be separated by enough time so that
the battery is sufficiently rested and enough current through-
put through the battery. The result further depends on the
key-on voltage readings for the open-circuit voltage values.
To calculate throughput, current integration may be used
which includes current sensor inaccuracy and current integra-
tion error. Current leakage during key-off periods may not be
accounted for. In addition, the temperature change between
the two key cycles may be large. The result of these inaccu-
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racies is that the battery capacity may be difficult to calculate
accurately using such an approach. In particular, small
changes in the battery capacity may not be discernible due to
the inaccuracies described.

The impact of voltage sensor inaccuracy on battery capac-
ity using the above two key-on/key-off cycles may be
expressed as follows:

T df df ‘ 28)
dr|«(AV) x| — | OCV| + — | OCV,
([, 1orae)- (g [ o0+ 7 [ oev)

AQ =
© (f(OCV2) - fOCVD))

where AQ is the potential capacity estimation error, OCV,
and OCV, are the two key-on/key-off voltage readings in
which f{OCV,) defines the SOC at that particular voltage, T is
the total time used in current integration, and AV represents
the voltage sensor inaccuracy. df/dV is the derivative of the
SOC-OCYV curve at the given OCV value.

As a worst case example, consider a 25 Ah cell with an
SOC change of 20% (5 Ah throughput) as measured at the
start of two separate ignition cycles. Assuming a voltage
sensor inaccuracy of 10 mV and a df/dV of approximately 1,
the capacity estimation error due to voltage sensor inaccuracy
will be AQ=9000 A-s. or approximately 10% of the battery
capacity.

The second category of battery capacity estimation algo-
rithms learns the battery capacity based on system identifica-
tion theory in which the battery capacity is learned as part of
a battery model. The model-based approach also has some
limitations. Normally, the battery capacity is only a weakly
identifiable variable. In particular, when many other battery
parameters are lumped together, the weak identifiability of
the battery capacity makes a model-based Kalman filter
approach impractical when the battery measurements are cor-
rupted by noise, sensor inaccuracies, or battery modeling
errors. Based on this, it may be desirable to eliminate the
errors induced in the battery capacity estimation by the open-
circuit voltage sensing error, unaccounted leakage current,
and temperature changes between two consecutive drive
cycles.

A battery model may be periodically executed in a vehicle
controller throughout the battery life. Based on the learned
model parameters, an SOC observer may be designed such
that SOC may be accurately estimated. The SOC observer
may be implemented and parameter estimates may be
obtained.

There are several approaches that may be applied to deter-
mine when to estimate the battery parameters. One approach
may be to learn the parameters at all times. However, there are
drawbacks to this approach. The equivalent circuit model is
only an approximation of the real battery behavior. Sensor
biases and inaccuracies may be present in the measurement
signals. These factors contribute to inaccuracies in the param-
eter estimation, particularly when the input is not sufficiently
rich or persistently excited. An input is not sufficiently rich if
the input does not provide proper excitation to the battery to
allow accurate parameter estimation. The richness or persis-
tency of the excitation may also depend on the presence of
various frequencies in the input signal. The input signal for a
traction battery may be a battery power demand. For example,
operating at a constant current may not provide enough varia-
tion to ascertain dynamic properties of the model.

Another approach may be to bypass the parameter estima-
tion when the input is not considered sufficiently rich. An
open-loop observer may be used to estimate battery state
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variables during these intervals. This approach involves
detecting when the conditions are not sufficiently rich and
may provide better estimates than the continual learning
approach. However, an issue with this approach may be the
effect of an extended period where the input is not sufficiently
rich for parameter estimation. The open-loop observer may
provide sufficient estimates initially, but over time the esti-
mates may become inaccurate.

Issues may arise when the battery system operates for an
extended period of time under conditions that are not suffi-
ciently rich to accurately learn the parameters. In these situ-
ations, the parameters may not be accurately learned for a
long period time. The last learned values may differ signifi-
cantly from the true value at the present time. For example,
the resistance r; in the circuit model may increase as the
battery ages. This may cause an unacceptable increase in the
battery power capability error.

Another approach may be to actively excite the battery for
parameter estimation purposes. The system may try to gen-
erate a battery input via torque modulation or other control
actions to create an input that is persistently excited for
parameter estimation purposes. The battery power demand
may be such that sufficient frequency components are excited
such that accurate parameter estimation may be achieved. The
controls actions are ideally transparent to the end users. For
example, any modification to the traction battery power
demand should not affect acceleration of the vehicle.

Persistent Excitation and Estimation Convergence
Conditions

In order to effectively learn the battery parameter values,
input conditions to the estimation model may need to be valid.
When valid input conditions are satisfied, the battery param-
eter values may be learned with sufficient accuracy. In the
absence of valid input conditions, battery parameter learning
may result in inaccurate values.

One condition that may be met is a persistent excitation
condition. In order to effectively estimate the parameters
shown above, an associated “persistent excitation” matrix
(PEM) may be defined as follows:

1 0+ Tper d(Vi(r) = VoelT) di(7) 29
PEM = — = ERMAM R AN A
Tpe ﬁ [ dr i) dr ]
[0 Vete) ) A1)

where T, is the time interval over which the integration takes
place. Alternatively, instantaneous values may be utilized
(e.g., eliminate the integration in the above equation). The
integration may help filter out noisy signals and prevent rapid
changes of the signals. The discrete form of equation (9) may
also be used to formulate the PEM. For example, T,,, may be
set to 5 seconds so that the PEM elements are integrated over
a 5 second interval. For the parameter estimates to be accu-
rate, the PEM may need to meet certain positive semi-defi-
niteness properties. A matrix, P, is positive semi-definite
if x"Px=0 for all x. The persistent excitation condition is that
matrices calculated as (PEM-a,I) and (0, I-PEM), where I is
an identity matrix, are positive semi-definite. The persistent
excitation condition may be expressed as o, ]=zPEM=a I, but
care must be taken as the expression is a matrix expression
and not a scalar expression. If a matrix is positive semi-
definite, all eigenvalues of the matrix are non-negative. A
matrix, P, that is positive definite (x”Px>0 for all x) is invert-
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ible. The expression o,IzPEM=a,, I may be referred to as a
persistent excitation condition. Note that the above PEM is of
a form associated with the chosen estimation model. Differ-
ent model formulations may result in a different PEM and
may have a different persistent excitation condition.

In other words, if the regressor-based persistent excitation
matrix satisfies certain positive definiteness conditions, then
the parameter estimates may be unbiased. When the persis-
tent excitation condition is met, the parameters may be accu-
rately learned as the input signals may be considered to be
sufficiently rich. The values o, and o, may define an upper
and lower bound for the positive semi-definiteness of the
persistent excitation matrix. The values a, and o, may
depend on characteristics of the battery system. When the
positive-definiteness criteria for the regressor-based matrix
are satisfied, the input conditions may be considered to be
valid. The values of T,,,,, o, and o, may be adjusted to modify
the persistent excitation condition to meet signal richness
requirements for different purposes.

The persistent excitation condition may indicate that input
conditions are valid for parameter estimation but does not
necessarily indicate that the parameter estimation has con-
verged to the true values. Additional monitoring of estimation
errors may be performed to ascertain when the parameter
estimates are converging to the actual values. An estimation
convergence condition may be monitored to ascertain the
convergence of the parameter estimates. One way to ascertain
the quality of the parameter estimates may be to monitor the
estimation error of one or more modeled variables or param-
eters. An error between an estimated value and a measured
value may be monitored. When the magnitude of the error is
bounded by a certain value over a predetermined time period,
the parameter estimates may be considered to be acceptable.
For example, the projection error (Vt(t)—vt(t)) from equation
(6) may be monitored for convergence. The estimation con-
vergence condition may be that the magnitude of the estima-
tion error be less than a predetermined threshold for a prede-
termined time period. One or more parameter errors may be
monitored and the selection of the monitored values may
depend on the model and measurements that are available.

When the battery is sufficiently excited (e.g., persistent
excitation condition satisfied) and the estimation error in the
parameter observer remains bounded for a given period of
time (e.g., estimation convergence conditions satisfied), the
SOC error may also be bounded by a predetermined value.
The SOC error bound may be designed to be sufficiently
small and the SOC value learned by the SOC observer may be
used to initialize the ampere-hour integration based SOC
method. Calibration of SOC error bound may be application
specific. For example, for vehicle drive control, a 2% accu-
racy may be sufficient. However, for battery capacity estima-
tion, a more accurate bound may be desired. A different error
magnitude threshold may be used for the estimation error
depending on the desired accuracy. A lower threshold may
improve accuracy of the estimation.

The above persistent excitation condition may be imple-
mented in a controller. The controller may be programmed to
calculate each element of the matrix and ascertain the positive
semi-definiteness condition. If the persistent excitation con-
ditions of positive semi-definiteness are met, a flag may be set
indicating that the input is sufficiently rich or persistently
excited for accurate parameter estimation. This flag may be
used to initiate a parameter estimation cycle. Alternatively,
parameters may be estimated at all times but the estimated
values may be ignored until the persistent excitation condi-
tion is satisfied for a predetermined period of time.
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Once the battery is sufficiently excited and the estimation
error is bounded for a given period of time, the SOC error may
be considered sufficiently small. This may be referred to as
SOC initialization-on-the-fly (SIOF). This term is used as an
accurate estimate of the open-circuit voltage may be
obtained, and hence an accurate value for SOC, at any time
while the controller is operating, not just at startup. The SOC
values may be obtained “on-the-fly” or at any time as opposed
to the prior art “startup-only” SOC initialization. Two such
events during a common ignition cycle may be used to replace
the two key-on voltage readings used in the prior art. This
approach does not depend on key-on and key-off cycles to
determine SOC values. The SOC values may be obtained at
any time while the system is operating. This scheme allows
the battery capacity to be calculated whenever the SOC error
is sufficiently small. The SIOF condition may be met when
the battery is sufficiently excited and the estimation error in
the model parameter observer remains bounded for a given
period of time.

SOC estimation error due to voltage and current sensor
accuracy may still remain. The most significant error may be:

K@ (IAVI+(r IAZD)

where K(k) is a gain, normally non-stationary, AV and Al are
voltage and sensor inaccuracies, respectively, and r; is the
battery internal resistance value at a given temperature and
SOC. The impact of voltage and current sensor inaccuracies
may be reduced by limiting capacity learning for tempera-
tures above a certain value and setting the observer gain to a
smaller value. The error estimation is not impacted by
changes in the capacity.

Given the above formulation, a system may determine if
the battery system is persistently excited such that acceptable
estimation results may be achieved. One technique may be to
monitor the persistent excitation condition described above.
A passive approach might monitor the persistent excitation
condition and perform parameter learning when the condition
is satisfied. The passive approach relies on normal operation
of the battery and learns the parameter values when the con-
ditions are proper.

An active excitation approach may create conditions such
that the persistent excitation condition is satisfied. This may
include operating the battery pack in such a manner as to
satisfy the persistent excitation conditions. This may require
the controller to command other devices or subsystems to
operate by providing power to or receiving power from the
battery. Ideally, this operation should be transparent to the
vehicle occupants. The active excitation approach may allow
the parameters to be learned at any time with the addition of
the active excitation of the battery system.

(30)

Scheduling Battery Capacity Based on Learning
Window

Once a method of calculating battery capacity is defined, a
related issue is scheduling the battery capacity learning. A
system may need to determine how often battery capacity
needs to be learned. There may be tradeoffs between the
amount of execution time spent on capacity learning and the
accuracy of the battery capacity value. Studies indicate that a
lithium-ion battery capacity fade follows a square-root-of-
time law under normal temperatures. The magnitude of
capacity fade is larger earlier in the battery life. Based on this
observation, battery capacity learning may be scheduled
based on calendar life of the battery. Since the magnitude of
change is greater earlier in battery life, learning events may be
scheduled more frequently early in the battery life. That is, as
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the age of the battery increases, the time interval between
successive battery capacity determinations may be increased.

The persistent excitation and estimation convergence con-
ditions described above may provide a check as to when
battery capacity may be accurately estimated. There may be
situations where conditions are not met for long periods of
time. Under these situations, “active excitation” of the battery
for estimation purposes may be initiated. Active excitation of
the battery attempts to cause battery operating conditions
such that the persistent excitation condition for capacity esti-
mation is satisfied. When the persistent excitation condition is
satisfied, the estimation convergence condition may also be
satisfied.

Capacity learning may be scheduled according to an
acceptable capacity error and the square-root-of-time law of
capacity fade. Scheduling may be evenly distributed based on
in-use time. One example of a system that calculates battery
power capacity is shown in FIG. 5. A predetermined schedule
of learning windows may be defined and stored in controller
memory. There may be many methods of setting the learning
windows. For example, the expected capacity fade may be
analyzed and learning windows may be created that corre-
spond to equal changes in capacity.

For each scheduled capacity learning event, two time val-
ues may be defined. A learn date (LD) may be defined and
may be a date and time in relative calendar terms associated
with beginning of life calendar time and defines a desired time
that the capacity should be learned. A latest learning date
(LLD) may be defined that may be a date and time in relative
calendar terms associated with the beginning of life calendar
time and defines the latest time at which the capacity should
be learned. The two values may define a target window of
time in which the capacity may be learned. A sequence of
capacity learning events, each event having associated time
values defined, may be predetermined and stored in controller
memory.

The controller may be programmed to maintain a battery
life time counter (t) that indicates the elapsed time since the
battery has been deployed. The battery life time counter (t)
may be reset to zero at the start of the battery life time. The life
time counter may be based on a calendar date and time that is
maintained by a controller within the vehicle. The battery life
time counter (t) may be incremented periodically over the life
time of the battery to reflect the time since the start of battery
life. The sequence of learning dates may be relative to the
battery beginning of life. At vehicle key-on, the battery life
time counter may be compared to the learning schedule to
determine if battery capacity needs to be calculated.

Atvehicle key-on 200, the controller may read the capacity
learning schedule into memory 202. The capacity learning
schedule may be comprised of a sequence of pairs of learn
dates (D) and latest learning dates (LLD). The pairs may be
indexed such that an index, j, into the learning schedule
returns the i learn date and the j** latest learn date. Each pair
in the learning schedule may have an associated flag that
indicates whether the learning has been completed yet for that
pair. The current learning schedule index may be ascertained
204 from the battery life time counter and the learn dates of
the learning schedule. The learning schedule may be searched
to find the next index for which the learning has not yet been
completed. The index, j, of this pair may be retained during
controller operation for accessing the learning schedule.

Before calculating battery capacity, the battery tempera-
ture, T, .., may be checked 206. To improve the estimation,
capacity may be learned when the battery temperature is
above a predetermined threshold, T_,,. If the temperature is
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below the predetermined threshold, parameter estimation
may be delayed until the temperature is above the threshold.

As described earlier, the learning schedule may define a
window of time in which to calculate the battery capacity. The
window may be defined by the index and the two time values
at that index—a learn date [LD(j)] and a latest learning date
[LLD(j)]. The controller may compare the battery life time
counter to the indexed learn date 208. If the battery life time
counter, t, has not reached the indexed learn date, the system
may continue to check the temperature 206 and the time 208.
In this case, the battery capacity may not be estimated at the
present time.

If the battery life time counter exceeds the indexed learn
date, then a passive excitation (PE) condition may be checked
210. The PE condition is met when the persistent excitation
condition and the estimation convergence condition are sat-
isfied. If the PE condition is met, the controller may store the
present open-circuit voltage, or alternatively the state of
charge associated with the open-circuit voltage, and reset
elapsed time (te) and throughput counter (TP) values 216.

Ifthe PE condition is not met, the battery life time counter
may be compared to the currently indexed latest learning date
[LLD@G)] 212. If the battery life time counter exceeds the
currently indexed LLD, then active excitation of the traction
battery may be initiated 214. If the battery life time counter
does not exceed the currently indexed LLD, then the execu-
tion may go back to checking the PE condition 210. In that
case in which active excitation is applied, after the active
excitation is applied, the estimated open-circuit voltage may
be sampled 216. This may assume that the active excitation
process is executed for a duration that guarantees that the PE
condition is met. Alternatively, after active excitation is
applied, the PE condition may be monitored to ensure that the
active excitation created the proper battery power demand.

A first open-circuit voltage value, V,_!, may be stored as
the present learned value for the open-circuit voltage. This
value may be the result of the battery impedance parameter
estimation model that is operating. A throughput (TP) value
may bereset to a value of zero. An elapsed time, t,, value may
be reset to zero. The throughput value may be used to accu-
mulate the current using an ampere-hour integration. During
operation, the throughput value may be incremented by the
product of the current and the sampling period.

Once the first open-circuit voltage is stored, the battery
temperature may be compared to a calibrated temperature
218. If the battery temperature, T,,,,, does not exceed the
calibrated temperature, T _,, the learning may be reset and the
execution may return to checking the PE condition 210. When
the battery temperature exceeds the threshold, other criteria
may be checked 220.

The throughput (TP) may be compared a threshold (TP.,,).
In addition, the elapsed time, t_, may be compared to a cali-
brated time, t_,,. If the throughput exceeds the throughput
threshold and the elapsed time is less than a calibrated value,
then the system may check the PE condition 222 again. The
time and throughput conditions may ensure that the battery
has been operated enough so that a reasonable SOC differ-
ence is present. Should the criteria not be met, the values of
throughput (TP) and the elapsed time (t,) may be incremented
226.

The throughput (TP) may be incremented by a product of
the sampling time and the measured current. The elapsed time
may be incremented by the sampling time at each execution
interval. Execution may then be returned to the temperature
check 218.

When the TP and t, criteria 220 are met, the PE condition
may be checked 222. If the PE condition is met, the system
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may store a second open-circuit voltage value, V,_2, 230 for
the final calculation of battery capacity. If the PE condition is
not met, the controller may check to see if the currently
indexed latest learning date is exceeded 224. The battery life
time counter may be compared to the currently indexed latest
learning date. If the battery life time counter exceeds the
currently indexed LLD, then active excitation may be initi-
ated 228. Should the battery life time counter not exceed the
currently indexed LLD then the execution may increment the
TP and t, values 226.

After active excitation, the second open-circuit voltage
may be stored 230 as the current open-circuit voltage value
from the model. The active excitation may need to be applied
for some period of time to allow the PE condition to be
satisfied. Once again, an alternative may be to actually check
the PE condition to ensure that the active excitation worked
properly.

Once the second open-circuit value is saved, the capacity
may be calculated 232 as follows:

Throughput
SOC; —50C;

31
Onew = Gh

The capacity may optionally be filtered 232 using a low-pass
filter. Once the capacity value is learned, the capacity learning
for the scheduled event may be considered complete. A flag
may be stored with the learning schedule entry to indicate that
the capacity learning for this entry has been completed. Note
that the SOC values may be derived as a function of the
open-circuit voltage as discussed in relation to FIG. 4. The
capacity value may be filtered by defining a value, a, that
weighs the contribution of the currently calculated capacity
and the previous capacity value. This may be expressed as:

Ornow= Qe H(1- ) Qs

where Q,,, represents the previous capacity value.

Once the new battery capacity is calculated, the learning is
completed for the indexed learn date 234. The battery capac-
ity for the index may be stored. A flag may also be stored with
the index to indicate that learning for the indexed schedule
values is completed. The execution may then stop 236 until
subsequent key-on cycles at which time the process may be
repeated as a new learning schedule index may be available.

In some situations, the inputs necessary to provide a per-
sistent excitation may not be present to meet the criteria for
passive excitation. This may be due to vehicle controls and
operator driving habits. In such a situation, the battery life
time counter may exceed the latest learning date for the
scheduled learning event. Should the battery life time counter
exceed the latest learning date without the capacity learning
being completed, the system may request that active excita-
tion be performed.

Active excitation may attempt to use other vehicle controls
(for example, high-voltage components such as electric air
conditioning, electric heater, power steering, or electric
vehicle motor control) such that the battery inputs satisfy the
persistent excitation criteria. Ideally, the operation of the
additional components will be performed in a manner trans-
parent to the operator. The active excitation may be con-
structed such that a net power at the wheels does not change
during the operation.

To summarize, the battery capacity calculation does not
necessarily require two open circuit voltage readings for SOC
obtained at the start of two separate ignition cycles. A model-
based system may be used to estimate battery capacity when
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SOC estimates have the highest confidence. Using the above
method, it may be desirable that the current integration and
SOC values be independent of one another to avoid circular
calculations. A pure ampere-hour integration based SOC cal-
culation makes the capacity estimate circular as both the
numerator and denominator of the equation would rely on the
current integration. The system described uses an ampere-
hour integration for the numerator but relies on model-based
parameters for the denominator, thus avoiding the circular
calculations. In addition, if conditions are such that SOC
estimates have a low confidence, the controller may operate
the traction battery to achieve conditions in which high con-
fidence estimates may be obtained.

It is easily shown that the effect of errors in the capacity
value have negligible effect on the SOC estimation from the
model. The derivative of the open-circuit voltage may be
expressed as:

df(soc) 1

dsoc Q

Voo (33)

where Q is the charge capacity and I is the battery current. In
a system in which the above equation is used in a model to
calculate V__, the error in the open-circuit voltage during a
constant current discharge may be approximated as:

df
~asoc”

A 1
1*—Q*—

2L

Vo - (34

Voc,exr =

where AQ represents an error in the capacity and L represents
the observer gain. The value of AQ may be considered to be
small compared with Q. As an example, assume that =100
Amps, L=100, df/dSOC=1, Q=25 Amp-hr=90000 Amp-sec,
and AQ=1000 Amp-sec. Using these values, the error
becomes V4,100,000 Volts which is nearly zero. Based on the
error analysis, it is reasonable to rely on a SOC estimation
using an observer based on a battery model even when the
battery capacity used in the model is not perfectly accurate.

Advantages of the capacity learning scheme is that the
impact of voltage sensor errors and unaccounted leakage
current on capacity estimation is reduced. Passive learning
using battery input based on driver input and vehicle controls
design may be used. Active excitation that is transparent to the
driver may also be used when necessary.

The above method provides an accurate estimation of SOC
based on the model parameter estimates. Once SOC is ascer-
tained, the traction battery may be operated according to the
SOC values. The traction battery may be further operated
based on the battery capacity estimate.

Scheduling Active Excitation for Cell Balancing

Within a battery comprised of many connected cells, the
state of charge of the cells may become unbalanced for many
reasons including manufacturing variations, cell fading at
different rates due to temperature distribution within the bat-
tery pack, and internal leakage at different rates due to chip
design. Battery cell imbalance may be defined as a difference
between SOC of the cells. Many production battery packs
include a cell balancing function in which cell balancing
control is triggered when a magnitude of an SOC difference
between cells exceeds a predetermined value.
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Cell balancing is a process that attempts to equalize the
SOC of the cells by adding or subtracting charge from the
affected cells. Prior art systems may initiate cell balancing
when a magnitude of an SOC difference between the cells is
greater than a threshold. When the SOC difference magnitude
between the cells is less than a second threshold, cell balanc-
ing may be terminated. Due to inaccuracies in the SOC val-
ues, prior art system may tend to over balance the cells lead-
ing to wasted energy.

Various methods of performing cell balancing are possible.
Some systems may include a switch across each cell that can
selectively switch a circuit element across the cell. The circuit
element may allow the cell to discharge. Alternatively, a
switch may selectively connect cells together such that one
cell discharges while charging another cell. Cell balancing
may be achieved by selectively charging and discharging the
cells of the battery until all cells have approximately the same
state of charge. The scheme to be described may be applicable
to any cell balancing hardware configuration.

Methods of calculating SOC, such as ampere-hour integra-
tion and model-based observers may be biased from the true
values. For a system that relies on a cell voltage measurement
at key on, the cell voltage sensor accuracy may cause inaccu-
rate SOC values. Due to tolerances in the cell voltage mea-
surements, SOC values may be inaccurate at initialization.
Cell imbalances may be falsely observed due to the voltage
measurement inaccuracy. Since the cell balancing strategy
relies on SOC, it is desirable to ensure that the SOC values are
accurate enough to initiate and terminate cell balancing.

Cell balancing may be initiated when a magnitude of an
SOC difference between cells is above a predetermined value.
After performing cell balancing for a period of time, the SOC
difference may be re-evaluated. If the magnitude of the SOC
difference is below a predetermined threshold, then cell bal-
ancing may be terminated. Note that some hysteresis may be
incorporated into the thresholds for initiating and terminating
cell balancing.

As discussed above, the SOC initialization-on-the fly tech-
nique may be applied to ensure high-quality SOC estimations
for each cell. When the persistent excitation condition is met
and the estimation convergence condition is met, the SOC
may be considered accurate. Cell balancing may be initiated
and terminated when high-quality SOC estimations are avail-
able for each cell.

FIG. 8 shows a flow chart of one possible implementation
of'a cell balancing strategy. At system start 500, the controller
may begin checking for vehicle key-on 502. If key-on is not
detected, the controller may continue to check the key-on
condition 502. If key-on is detected, the controller may start a
timer, T, 504. The timer, T _,, may be used to ensure that the
cell balancing is performed within a predetermined amount of
time. The controller may then begin checking for the SOC
initialization-on-the-fly (SIOF) conditions 506. The SIOF
conditions may be that persistent excitation and estimation
convergence conditions be satisfied.

If the SIOF conditions are met, the system may perform
cell balancing 508. At this point, SOC differences between
the cells may be calculated to ascertain whether or not cell
balancing is required. If cell balancing is necessary, then
appropriate control actions may be taken (e.g., triggering
appropriate switching devices). A check may then be made as
to ascertain if the cell balancing is complete 510. Completion
may require that the SOC difference magnitude be below a
predetermined magnitude. If cell balancing is complete, the
execution may end 518 until started again. If cell balancing is
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not complete, the system may continue checking the SIOF
conditions 506 and continue cell balancing 508 while the
SIOF conditions are met.

Should the SIOF conditions not be met, the system may
check the status of the timer T, 512 to ascertain if the timer
has expired. Note that the timer may be implemented as a
count up or count down timer. Expiration of the timer, T _,,
indicates that a predetermined amount of time has elapsed. If
the timer has not expired, the system may continue checking
the SIOF conditions 506. If the timer has expired, then active
battery excitation may be initiated 514. The active battery
excitation request may ensure that the SIOF conditions are
met. After initiating active battery excitation, the SIOF con-
ditions may be checked 516. If the SIOF conditions are not
met, the system may continue requesting active battery exci-
tation 514. If the SIOF conditions are met, the system may
continue cell balancing until completion.

The system may limit the number of cell balancing cycles
within a single ignition cycle to be less than a predetermined
number of cycles. Limiting the number of cycles during an
ignition cycle helps to avoid excessive cycling of the cell
balancing logic in the event that the SOC estimation is inac-
curate or that the cell balancing conditions are too narrow.

Additionally, active excitation may be requested a prede-
termined amount of time after the cell balancing has been
initiated if the SIOF conditions are not satisfied during cell
balancing. This may help to ensure that accurate SOC values
are calculated during cell balancing. In addition, such a
scheme may reduce the amount of time necessary for cell
balancing.

By activating the active excitation of the battery, improved
parameter estimates may be obtained. Battery SOC may be
derived from the parameter estimates. By ensuring that con-
ditions are proper for estimation, the system may perform
more effective cell balancing. In particular, the determination
that SOC levels are equalized may be more accurate so that
cell balancing is more effective.

A battery control system may continuously calculate SOC
and monitor the quality of the SOC during cell balancing. An
advantage of the disclosed scheme is that a fixed cell balanc-
ing time is not necessary. Cell balancing may continue until
the SOC values are balanced with no need for the balancing
routine to run longer. Faster cell balancing times may be
achieved by requesting active excitation of the battery inputs
during cell balancing.

Scheduling Active Excitation Based on Quality of
Parameter

Battery control signal accuracy (e.g., power capability and
state of charge) using a model-based approach relies on
parameter estimation accuracy, particularly the r, resistance
estimate. Power capability estimation error and state of
charge estimation error may be expressed as a function of
resistance r; estimation error as follows:

Power Capability Estimation Errorec],, . *Ar; (35)

State of Charge Estimation Errorecl,, , *Ar, (36)

The resulting estimation errors are proportional to the
maximum charge or discharge current times the error in the
resistance r; estimation. The resistance value may be
expected to increase over the life of the battery for a given
battery temperature. A value used at the battery beginning of
life may not reflect the actual resistance value over time as the
value increases. Upper and lower limits of the battery param-
eters over time may be known such that, for a given battery
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age, a range of expected values may be defined. It is possible
that if the battery impedance parameters are not learned over
time that the current resistance value may fall outside of the
expected range. When the error becomes too large, it may be
desirable to force the system to learn via active excitation.

The battery impedance parameters may be initialized using
parameter data based on battery life. As described earlier, the
battery parameters may change over the life of the battery as
a function of temperature and state of charge. FIG. 6 depicts
an example flow chart of how parameter learning may be
constructed. A preparation phase 300 may be initiated in
which initial battery parameter values and tables are con-
structed. A parameter table may be constructed that defines a
profile for each battery impedance parameter based on state
of charge and temperature. The parameter space may be
divided into a grid of different intervals of temperature and
state of charge 302. The grid may be evenly spaced or
unevenly spaced. The grid may be based on a partial deriva-
tive of the parameter with respect to temperature or state of
charge. The temperature range (e.g., —40 C to 55 C for pro-
duction battery) may be denoted as T, ~[1, ..., N, and the
state of charge grid may be denoted SOC,,,/~[1,...,N,]. The
grid may be initialized with values from test data or expected
values 304. For a beginning of life battery, each grid may be
associated with a time stamp denoted t,,,,,,,,(i,j) which may be
initialized to zero. Each grid may have an associated Quality
Of Parameter Estimation, QOPE(i,j), value which may be
initialized to one. The grid may be retained in controller
memory such that the data is available during subsequent
ignition cycles.

The QOPE may be a value that indicates the past quality of
the estimation. A value less than one may indicate that the
learned parameter set for the given indices (i,j) has larger
variations. A higher value may indicate less variation over
time and may represent a more reliable estimate of the param-
eter value.

Once the grid is initialized, the system may wait for the
vehicle to key on. At vehicle key on 306, the contactor may be
turned on. Estimation may not be performed if the contactor
is not turned on. The contactor may be checked to verify that
the contactor is on 308. Ifthe contactor is not requested to turn
on, then the system may continue checking the contactor
status 308. If the contactor is turned on, the system may begin
the parameter estimation process 310.

The system may then measure the temperature of the bat-
tery pack. The controller may sample the temperature signal
and store the result. The battery state of charge may also be
evaluated. The state of charge may be calculated using
ampere-hour integration. Ampere-hour integration may pro-
vide a reasonable estimate at initialization as this technique
does not rely on the equivalent circuit parameter learning. In
addition, the battery equivalent circuit parameters are less
dependent on state of charge.

Knowing temperature and state of charge, the grid location
for the current operating point may be ascertained. By com-
paring the temperature measurement to the elements of T,,, 4
the controller may find the index corresponding to the tem-
perature measurement. Likewise, by comparing the state of
charge value to the elements of SOC,,,;, the controller may
find the index corresponding to the current state of charge.
The time stamp and quality of parameter estimation associ-
ated with the grid point (i,j) may then be read from t,,,,,,,,(i,j)
and QOPE(i,j) respectively 312.

The battery may age via power capability fade (through
increasing of the internal resistance) and capacity loss
(through loss of capabilities to hold ions in lithium-ion bat-
teries). A calibration map (Timecal) may be defined to
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describe the resistance increase over time. The calibration
map may indicate a series of times at which the battery param-
eters are expected to change. One method of obtaining the
Timecal map may be to use a fixed interval that is dependent
on the temperature and state of charge indices. Another
method may be to use an adjustable time interval, that
depends on temperature, state of charge, and the length of
time the battery has been in operation. The adjustable time
method may be derived from the observation that the battery
aging (e.g., internal resistance change) occurs at a different
rate over time. Battery power and capacity fade may occur
faster in the earlier stages of battery life according to a root-
square of time rule. The Timecal may be denoted as Timecal
(i) and may be a function of battery use time, temperature,
and state of charge. The Timecal value may be updated over
time.
A projected quality of parameter may be calculated as

ProjQOP(i,/)=QOPE(i,j)* e~ (istarp () (37)

and a desired quality of parameter calibration may be
expressed as

QOPcal(i fy—e - TimeCali/y (38)

where t is the current time and « is a parameter for represent-
ing gradual decay of the parameter estimation quality over
time.

An exponential decay function is shown above but other
functions may be used so long as it is monotonically decreas-
ing over time. QOPcal may be calculated directly from Time-
Cal and a so there is no need to store QOPcal as a map. The
learned parameter has an associated quality index. As time
elapses, the quality index decays. When determining whether
to generate a new active excitation request, the projected
quality index (ProjQOP) may be compared with a desired
quality of parameter value (QOPcal) 314.

For example, consider the case in which the previously
learned values, via active or passive excitation, for a given
index (i,j) are the same. This indicates that the parameters at
this index have not changed over time. In this case, the learn-
ing appears to have yielded a proper value. Active learning
should not be requested too often. Such a learning sequence
may be given a high QOPE which provides a larger ProjQOP
and less opportunity to request active learning.

As another example, consider the case in which the previ-
ously learned values are significantly changed as measured by
the standard deviation of the values. A low value of QOPE
may be assigned to the learning sequence. A low QOPE
provides a smaller ProjQOP which provides more opportu-
nity to request active learning.

A request to perform active learning 316 may be initiated
when ProjQOP(1,j)<QOPcal(i,j). When this comparison is
true, a flag may be set to request active excitation such that the
parameters may be learned during active excitation of the
traction battery. Hysteresis may be added to prevent switch-
ing between states too quickly.

The projected QOPE value may start at a value defined by
QOPE(i,j) and decay over time from that value. Likewise, the
desired quality of parameter calibration may start at a value of
one (when t=Timecal(i,j)) and decay over time from that
value. Over time, the Timecal value may be reset based on
temperature, state of charge or battery use time. When this
occurs, the desired quality of parameter calibration may be
reset to one making an active learning request more likely.

The system may operate so that a request to perform active
excitation of the battery pack is based on the variability of
previous parameter estimates and the time since the param-
eters were last estimated. As the variability of the parameters
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increases, the time between active excitation requests may
decrease. In addition, based on the observation that param-
eters may change slower as the battery ages, the time between
active excitation requests may increase as the age of the
battery increases.

The time and time stamp values may be based on an overall
controller global time. In other examples, the times may be
based on a vehicle run time, battery contactor on-time, or
battery throughput. The time stamp may represent the time
that the parameter was updated.

Once active excitation is requested, a check may be made
to determine if the parameter learning was indeed successful
318. Parameter learning may be checked using one or both of
the persistent excitation condition and the estimation conver-
gence condition. If the parameter learning was successful,
parameter values may be retained for later use 320. If the
parameter learning was not successful or the parameters have
been updated, operation 322 may be executed to check the
contactor off status. If the contactor is off, execution may
return to operation 308. If the contactor is on, execution may
return to operation 310. The calculated QOPE and the asso-
ciated time stamp may be written to memory or EEPROM for
the associated grid point. The learned parameters may be
stored in a database as 0,(i,j.k), where (i) are the grid indices
and k, an element of set [ 1,K], is a stack-like structure to store
learned parameters sequentially. If less than K data points
have been learned, QOPE(1,j) may be set to one. If there are K
entries in the database and a new parameter is learned, the
newly learned parameter may push the oldest data out of the
set.

When K data values have been learned, the standard devia-
tion of the K entries may be calculated. A map may be defined
to calculate QOPE based on the standard deviation: QOPE(,
j)=f(standard deviation of the K values). If the standard devia-
tion of the K entries is zero (i.e., values all the same) then
QOPE may be assigned a maximum value which leads to a
higher ProjQOP. If the standard deviation exceeds a prede-
termined threshold, the map may output a value less than one
leading to a lower ProjQOP. As the standard deviation
increases, the initial QOPE(1,j) may decrease.

Parameter estimates may be obtained using the model-
based methods described above. The parameter estimates
may be the result of passive or active excitation. Additional
criteria for the parameter estimates such as persistent excita-
tion or SIOF conditions may be checked. The scheme
described attempts to decide when a new parameter estimate
is needed for a given grid point based on the age and quality
of the parameter estimate.

The above scheme may be used with other equivalent cir-
cuit models or parameterized electro-chemical models. The
method of generating an active excitation may result in more
accurate parameter estimates. The active parameter learning
request may be based on the past update history of the param-
eters. Active learning may only be requested when needed
based on the impact of the potential parameter error on the
battery control signal estimations. The learning time may be
determined based on battery properties and learning history
data quality of estimation.

The above method may be implemented in one or more
controllers as part of a powertrain control system or a vehicle
power system. Active excitation may be requested based on
variability of parameter estimates and the age of the most
recent estimate. As parameter variability decreases, the time
between active excitation requests may increase.

Performing Active Excitation

Prior art battery estimation may rely on voltage and current
measurements obtained during normal battery operation.
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Normal battery operation may attempt to optimize fuel effi-
ciency or minimize system losses. Such normal operation
may not be optimal for estimating the battery parameters. The
result may be that battery parameter estimates take longer to
converge or that the battery parameter estimates are inaccu-
rate. To improve parameter estimation, it is possible to excite
the traction battery such that optimal conditions are present
for parameter estimation.

A sufficient condition for accurate parameter estimation of
the equivalent circuit model parameters is that the input signal
contains at least one distinct frequency component for each
two unknown parameters. These frequency components must
have high signal-to-noise (SNR) in the input signal. The
battery power demand profile must contain more than two
distinct frequency components to achieve a quality estimation
using the simplest model.

During vehicle operation, the persistent excitation condi-
tions may not be satisfied or may only be weakly satisfied.
One method to analyze the sufficiency of the battery power
demand may be to analyze the frequency content of the bat-
tery power demand signal. In order to properly estimate the
battery parameters, it may be desirable that the battery power
demand vary over time. For example, during extended cruise
control operation at a steady speed, the conditions may not be
satisfied. During steady state speeds, the battery power
demand may be at a nearly steady value. This constant value
may not excite enough frequencies to allow for accurate esti-
mation. The frequency component magnitudes may need to
be above any noise signals to allow for identification of the
parameters. During vehicle operations where the battery
power demand is varied, the conditions are more likely to be
satisfied. That is, the magnitude of the frequency components
may be large enough to allow identification of the parameters.
When the conditions are satisfied, the battery parameter esti-
mation may be more accurate.

Inaccurate parameter estimation or infrequent update of
the parameters may lead to inaccurate battery control values,
such as state of charge and battery power capability, being
calculated. For example, battery power capability may be
incorrect which may impact battery durability and lifetime.
Battery state of charge may be inaccurate which may impact
vehicle system control and the energy management strategy.
Fuel economy or energy efficiency during vehicle operation
may be degraded.

An example of when persistent excitation criteria may not
be satisfied is during generally constant battery power
demands. This may occur during drive cycles in which a
constant or steady speed is maintained. During a generally
constant battery power demand, there may be little or no
variation in the battery power that is supplied by the battery.
When analyzed in the frequency domain, frequency compo-
nent amplitudes for a given range of frequencies may be
relatively low. In fact, if the power demand is constant there
may only be a zero frequency amplitude.

As another example, consider a sinusoidal battery power
demand that varies at a constant frequency at some magni-
tude. In this case, the frequency component amplitude at the
constant frequency may be greater than the amplitude found
at other frequencies. When plotting amplitude versus fre-
quency a spike at the constant frequency may be observed. As
additional frequency components are added to the battery
power demand the amplitude values at the different frequen-
cies will increase.

As discussed above, the control system may passively per-
form parameter estimation by waiting for the conditions to be
satisfied. Alternatively, a request to actively control the bat-
tery power demand to satisfy the conditions may be initiated.
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The control strategy for actively modifying the battery power
demand may require several functions. A battery system state
monitoring function may determine when to generate an
active system excitation request. A battery system excitation
input signal pattern recognition function may determine the
battery power input format and frequency components. A
battery system excitation output function may issue com-
mands to realize the desired battery system input.

The format of the battery power demand signal may need to
be determined. In general, a battery power demand signal
may be selected that forms a certain predefined pattern for a
short time period with a number of distinct and dominating
frequency components n>N/2, where N is the total number of
system parameters to be identified. This condition may be
considered to be the frequency domain equivalent of the
persistent excitation condition described previously. In prac-
tice, the shape ofthe excitation input pattern must be specified
such that the resulting battery power demand has significant
magnitude, but constrained with the battery power limits.
Without a loss of generality, a candidate signal, P may be
generated as:

Pbatthzx' lnAi Sin((")i"'q)i)

=

(39

where w and ¢ are the angular frequency and phase of the i-th
frequency component and A, is the magnitude of the i-th
component. In addition, the active battery power pattern
should comply with battery SOC conservation requirements.

During periods of generally constant battery power
demand, when viewed in the frequency domain, a range of
frequency component amplitudes of battery power demand
may be less than a predefined magnitude. Active excitation
causes a predetermined number of the frequency component
amplitudes to exceed the predefined magnitude by modifying
the battery power demand. The specific range and predefined
magnitude may be dependent upon the particular battery
impedance parameters.

In an electrified vehicle, the battery power demand, P, ., to
satisfy a given driver power demand, P, ,,,, may be determined
as follows:

P ongtPrau=Piross—Pace=Puint

eng

(40)

P =PoupnrPriPloga (41)

where P, _ is engine power, P, is battery power, P, is the
powertrain power loss, P, is the accessory power load, P,
is the propulsion wheel power, P, is the driver demand, P,
is the braking wheel power, and P, , is the external power
loads. Under driving conditions, P, ,, must satisfy the driver
demand.

One possible method of altering the battery power demand
is to adjust the power demand allocation in the vehicle system
control domain. The overall power distribution may be dis-
tributed between the engine and the battery by controlling a
power distribution between an engine power output and an
electric machine power output. The desired battery power
demand may be generated at a given wheel power demand
level as:

P batt:P whit P loss+P acc_P eng:P batt__atv (42)

When setting the battery power to the candidate signal, the
engine power may be adjusted to compensate as follows:

Pong—P, battiatv+P whit P, loss+P ace

enss “3)

FIG. 7 shows a power flow diagram for the system depict-
ing the above equations. When considering normal power
distribution between the battery and engine, the switches
(418, 420, 422, 424) may be considered open. The system

may calculate an engine power (P,,,.) 400 and a battery power
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(Pp4z) 402 to meet specified performance objectives such as
system efficiency while meeting the overall driver demand
(P, 414. The total power supplied by the engine and battery
(P,,,) 428 is the sum of the engine and battery powers. Note
that battery electrical power may be converted to mechanical
power by an electric machine. Power is required to account
forlosses (P,,,) 404 and accessory power consumption (P,_.)
406. A power at the wheel is determined (P, ;) 410 based on
the power supplied by the battery and engine minus these
losses and accessory loads. The power output from the driv-
etrain (P,,) 414 is the power delivered to the wheel 410
minus any braking power (P,,,) 408 and minus any vehicle
load (P,,,,) 412.

P, ;,; 410 may be a total power from the engine and electric
machines delivered to the wheels of the vehicle. The wheel
power reflects the torque applied at the wheel which is a
function of the engine torque and the electric machine torque.
The losses, P,,,, 404, may be powertrain losses that include
transmission efficiencies and rotating losses. These losses
may also include electric machine and power electronics effi-
ciencies and losses.

During active excitation, the battery power demand may be
set to a pattern that sufficiently excites the system so that
parameter estimation accuracy may be improved. The engine
power should not be permitted to violate any engine power
limits and abrupt changes in engine speed or torque may be
limited. The total power from the engine and battery may
remain the same, the distribution of the power provided
between the two may be altered to provide sufficient excita-
tion for battery parameter estimation. When more battery
power is provided, less engine power is needed.

An adjustment to battery power is depicted in FIG. 7 as an
active excitation power addition AP,,,, ., 416. The addi-
tional battery power may be a positive or negative quantity
that makes P, ,, equal to P,,,, . as discussed above. When
using the engine to offset the battery power addition, any
increase in battery power supplied may lead to a decrease in
engine power supplied. Any decrease in battery power sup-
plied may lead to an increase in engine power supplied. In this
mode of active excitation, switches S1 (418) and S2 (420)
may be closed. The additional power AP, ,, . 416 may be
added to P,_,, (402) to give an adjusted battery power P',_,
430. The additional power AP, . ., 416 may be subtracted
from the engine power P, 400 1o give an adjusted engine
power P',, - 426. In this mode, the total power output P,,, 428
may be the same as before (that is, without the addition of
AP, ... . 416). This mode merely adjusts the relative power
contribution between the engine and the battery.

Another possible method of altering the battery power
demand may be to alter the accessory power, P,,__. This may
be achieved by controlling power consumed by an electrical
load. The above equations apply except that engine power is
not changed, but an accessory load power may be changed.
The resulting equation is:

P acc:P eng+P batt__atv™ 4 whi™ P loss (44)

In this case, as more battery power is provided, the accessory
load is operated to use the additional battery power.

This method may be analyzed from FIG. 7 by closing
switch S1 (418) and switch S3 (422). Battery power may be
adjusted by AP, ., 416 to yield an adjusted battery power
P', ., 430. The accessory power P, 406 may be incremented
by AP,.ss an 416 as well to yield P, 432. In this mode, the
additional power is drawn from the battery to supply an
increased demand from the accessory loads. Modifying the
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accessory load may require close coordination with associ-
ated controllers to increase a power demand for accessory
load.

Another possible method of altering the battery power
demand may be through wheel torque cancellation. Torque
cancellation applies an active brake torque to boost the pro-
pulsion wheel torque above the normal drive power demand
plus load torque level. The effect may be achieved by con-
trolling an electric machine power output and operating a
wheel brake to offset the changes in the electric machine
power output. As P, is increased, P, ,, may be increased to
compensate. The increase in P, ;,, may be accomplished with
additional battery power, P, ... In this manner, P,,, and P, .
may be altered using P, ,, ., to achieve the desired battery
power demand excitation.

This method may be analyzed from FIG. 7 by closing
switch S1 418 and switch S4 424. Battery power may be
adjusted by AP, ,, .., 416 to yield an adjusted battery power
P',.. 430. The brake power P,,, 408 may be incremented by
AP, i an 416 as well to yield P',,, 434. In this mode, the
power absorbed by the braking system may be supplied by the
battery.

Wheel torque cancellation may require close coordination
with the braking system to apply a braking force to the
wheels. Additionally, coordination with the battery controller
and power electronics module may be necessary. The power
electronics module may be required to change the mechanical
power output of an electric machine to supply the extra power
absorbed by the brakes.

In all of the cases described, the power delivered P, 414
remains the same. The vehicle and powertrain delivers and
absorbs power in such a manner as to be transparent to the
vehicle operator. Any additional power added into the driv-
etrain may be absorbed by other components such that the
output power remains constant. Since the power at the wheel
for propulsion remains the same in each case, the traction
battery excitation does not affect the vehicle acceleration. The
system described creates a condition for improved battery
excitation without affecting acceleration of the vehicle.

Note that in FIG. 7, the switches are merely illustrative of
how the system is intended to operate. In practice, the logic
may be implemented in the controller and no physical
switches are necessary.

There are several situations in which active battery power
excitation may be useful. One situation may be during cold
start conditions. The battery system may be equipped with a
temperature control system to maintain the battery operation
within a certain temperature range. Under cold start condi-
tions it may be desired to accurately estimate the battery
parameters. To guarantee that the parameters may be accu-
rately learned, the active excitation scheme may be initiated.

The battery system parameter values are also dependent on
the battery SOC. At certain SOC levels, the battery param-
eters may not be learned unless the system estimation condi-
tions are satisfied. They may be observed in PHEV and BEV
as the battery depletes from a high SOC to a low SOC during
vehicle operation. At certain SOC levels, the active excitation
may be initiated to allow accurate parameter estimation.
Accurate knowledge of the battery parameters is important
for battery system protection and durability. In addition,
accurate knowledge of the parameters helps to achieve con-
sistent performance and fuel economy.

The active excitation system described may find most
usage during periods of generally constant battery power
demand. During a period of generally constant battery power
demand, the frequency component amplitudes over a given
range may be less than some threshold. This may indicate that
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the persistent excitation criteria may not be satisfied. When a
condition is identified in which active excitation is needed,
the battery power demand may be adjusted in order to cause
the desired number of frequency component amplitudes to
exceed a threshold value. The range of frequencies and the
magnitude of the frequency component amplitudes may be
based on expected battery impedance parameters. The active
excitation system may then operate various vehicle systems
to achieve the desired battery power demand without affect-
ing acceleration of the vehicle.

The active excitation may be implemented as part of a
powertrain control system for a vehicle. The system described
may require coordination between multiple systems or con-
trollers. An electrical load may need to be controlled and may
have an associated controller. The electric machine power
may need to be controlled and may have an associated con-
troller. The engine may require operational changes as well.
The controllers may communicate via a network to coordi-
nate operations. A coordinating controller that implements
the algorithm may be part of a powertrain control system and
may communicate with the other controllers to achieve the
desired operation.

The processes, methods, or algorithms disclosed herein
can be deliverable to/implemented by a processing device,
controller, or computer, which can include any existing pro-
grammable electronic control unit or dedicated electronic
control unit. Similarly, the processes, methods, or algorithms
can be stored as data and instructions executable by a con-
troller or computer in many forms including, but not limited
to, information permanently stored on non-writable storage
media such as ROM devices and information alterably stored
on writeable storage media such as floppy disks, magnetic
tapes, CDs, RAM devices, and other magnetic and optical
media. The processes, methods, or algorithms can also be
implemented in a software executable object. Alternatively,
the processes, methods, or algorithms can be embodied in
whole or in part using suitable hardware components, such as
Application Specific Integrated Circuits (ASICs), Field-Pro-
grammable Gate Arrays (FPGAs), state machines, controllers
or other hardware components or devices, or acombination of
hardware, software and firmware components.

While exemplary embodiments are described above, it is
not intended that these embodiments describe all possible
forms encompassed by the claims. The words used in the
specification are words of description rather than limitation,
and it is understood that various changes can be made without
departing from the spirit and scope of the disclosure. As
previously described, the features of various embodiments
can be combined to form further embodiments of the inven-
tion that may not be explicitly described or illustrated. While
various embodiments could have been described as providing
advantages or being preferred over other embodiments or
prior art implementations with respect to one or more desired
characteristics, those of ordinary skill in the art recognize that
one or more features or characteristics can be compromised to
achieve desired overall system attributes, which depend on
the specific application and implementation. These attributes
may include, but are not limited to cost, strength, durability,
life cycle cost, marketability, appearance, packaging, size,
serviceability, weight, manufacturability, ease of assembly,
etc. As such, embodiments described as less desirable than
other embodiments or prior art implementations with respect
to one or more characteristics are not outside the scope of the
disclosure and can be desirable for particular applications.
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What is claimed is:

1. A powertrain control system for a vehicle comprising:

at least one controller programmed to, in response to a

variability of estimates of a battery parameter and an age
of a most recent estimate of the battery parameter
exceeding associated thresholds, excite a battery to
cause an amplitude, corresponding to at least one fre-
quency associated with battery power demand within a
predetermined frequency range, to exceed a predeter-
mined magnitude when all amplitudes corresponding to
frequencies within the predetermined frequency range
are less than the predetermined magnitude.

2. The powertrain control system of claim 1 wherein the at
least one controller is further programmed to excite the bat-
tery further in response to a time elapsed since an immedi-
ately previous excitation exceeding a threshold that decreases
as the variability increases.

3. The powertrain control system of claim 1 wherein the at
least one controller is further programmed to excite the bat-
tery further based on an age of the battery.

4. The powertrain control system of claim 3 wherein the at
least one controller is further programmed to excite the bat-
tery further in response to a time elapsed since an immedi-
ately previous excitation exceeding a threshold that increases
as the age of the battery increases.

5. The powertrain control system of claim 1 wherein the
variability is based on a standard deviation of previously
learned estimates of the battery parameter.

6. The powertrain control system of claim 1 wherein the at
least one controller is further programmed to estimate the
battery parameter when the amplitude exceeds the predeter-
mined magnitude.

7. The powertrain control system of claim 1 wherein the at
least one controller is further programmed to estimate the
battery parameter at a plurality of state of charge and tem-
perature values.

8. A method of controlling a vehicle comprising: exciting a
traction battery to cause an amplitude corresponding to at
least one frequency associated with battery power demand
within a predefined frequency range to exceed a predeter-
mined magnitude in response to a variability of estimates of a
battery parameter and an age of a most recent estimate of the
battery parameter exceeding associated thresholds;

and operating an engine and an electric machine to offset

changes in battery power demand.

9. The method of claim 8 wherein a time between excita-
tions decreases as the variability increases.

10. The method of claim 8 wherein exciting the traction
battery is further based on an age of the traction battery.
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11. The method of claim 10 wherein a time between the
excitations increases as the age of the traction battery
increases.

12. The method of claim 8 wherein the variability is based
on a standard deviation of a plurality of previously learned
estimates of the battery parameter.

13. The method of claim 12 further comprising estimating
the battery parameter when the amplitude exceeds the prede-
termined magnitude, and operating the traction battery
according to the estimate of the battery parameter.

14. A vehicle comprising:

a traction battery; and

at least one controller programmed to, in response to a

variability of estimates of a battery parameter and an age
of a most recent estimate of the battery parameter
exceeding associated thresholds, excite the traction bat-
tery to cause, for at least one frequency associated with
battery power demand within a predefined frequency
range, a corresponding amplitude to exceed a predeter-
mined magnitude.

15. The vehicle of claim 14 wherein the at least one con-
troller is further programmed to excite the traction battery
further in response to a time elapsed since an immediately
previous excitation exceeding a threshold that decreases as
the variability increases.

16. The vehicle of claim 14 wherein the at least one con-
troller is further programmed to excite the traction battery
based on an age of the traction battery.

17. The vehicle of claim 14 wherein the at least one con-
troller is further programmed to excite the traction battery
further in response to a time elapsed since an immediately
previous excitation exceeding a threshold that increases as the
age of the traction battery increases.

18. The vehicle of claim 14 wherein the at least one con-
troller is further programmed to estimate the battery param-
eter when the corresponding amplitude exceeds the predeter-
mined magnitude.

19. The vehicle of claim 14 wherein the predetermined
frequency range and the predetermined magnitude are
defined by traction battery impedance parameters.

20. The vehicle of claim 14 further comprising an engine,
an electric machine, an electrical load and a wheel brake
wherein the at least one controller is further programmed to
operate one or more of the engine, the electric machine, the
electrical load and the wheel brake to cause a change in
battery power demand to excite the traction battery and offset
changes in wheel power caused by the change in battery
power demand such that acceleration of the vehicle is not
affected by the change in battery power demand.
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